首页> 外文OA文献 >Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy
【2h】

Steering Orbital Optimization out of Local Minima and Saddle Points Toward Lower Energy

机译:局部极小和鞍点的转向轨道优化   走向低能源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The general procedure underlying Hartree-Fock and Kohn-Sham densityfunctional theory calculations consists in optimizing orbitals for aself-consistent solution of the Roothaan-Hall equations in an iterativeprocess. It is often ignored that multiple self-consistent solutions can exist,several of which may correspond to minima of the energy functional. In additionto the difficulty sometimes encountered to converge the calculation to aself-consistent solution, one must ensure that the correct self-consistentsolution was found, typically the one with the lowest electronic energy.Convergence to an unwanted solution is in general not trivial to detect andwill deliver incorrect energy and molecular properties, and accordingly amisleading description of chemical reactivity. Wrong conclusions based onincorrect self-consistent field convergence are particularly cumbersome inautomated calculations met in high-throughput virtual screening, structureoptimizations, ab initio molecular dynamics, and in real-time explorations ofchemical reactivity, where the vast amount of data can hardly be manuallyinspected. Here, we introduce a fast and automated approach to detect and cureincorrect orbital convergence, which is especially suited for electronicstructure calculations on sequences of molecular structures. Our approachconsists of a randomized perturbation of the converged electron density(matrix) intended to push orbital convergence to solutions that correspond toanother stationary point (of potentially lower electronic energy) in thevariational parameter space of an electronic wave function approximation.
机译:Hartree-Fock和Kohn-Sham密度泛函理论计算的基本程序包括在迭代过程中为Roothaan-Hall方程的自洽解优化轨道。通常会忽略存在多个自洽解,其中几个可能对应于能量函数的最小值。除了有时难以将计算收敛到自洽解之外,还必须确保找到正确的自洽解,通常是电子能量最低的解决方案。收敛到不需要的解通常不容易被发现并且不会传递不正确的能量和分子特性,从而引起化学反应的误导性描述。基于不正确的自洽场收敛的错误结论在高通量虚拟筛选,结构优化,从头算分子动力学以及化学反应性的实时探索中遇到的繁琐的自动化计算中尤为繁琐,在这些情况下,几乎无法手动检查大量数据。在这里,我们介绍了一种快速,自动化的方法来检测和纠正不正确的轨道收敛性,该方法特别适用于分子结构序列的电子结构计算。我们的方法由会聚的电子密度(矩阵)的随机扰动组成,该扰动旨在将轨道会聚推向与电子波函数近似的变量参数空间中的另一个固定点(可能具有较低电子能量)相对应的解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号